Raman measurements in high-quality InN nanocolumns and thin films grown on both Si(1 1 1) and Si(1 0 0) substrates display a low-energy coupled LO phonon–plasmon mode together with uncoupled longitudinal optical (LO) phonons. The coupled mode is attributed to the spontaneous accumulation of electrons on the lateral surfaces of the nanocolumns, while the uncoupled ones originates from the inner part of the nanocolumns. The LO mode in the columnar samples appears close to the E1(LO) frequency. This indicates that most of the incident light is entering through the lateral surfaces of the nanocolumns, resulting in pure longitudinal–optical mode with quasi-E1 symmetry. For increasing growth temperature, the electron density decreases as the growth rate increases. The present results indicate that electron accumulation layers do not only form on polar surfaces of InN, but also occur on non-polar ones. According to recent calculations, we attribute the electron surface accumulation to the temperature dependent In-rich surface reconstruction on the nanocolumns sidewalls.